Eletrônica básica [ Autor: Laércio Vasconcelos ] Part - I - II

Iniciado por Overburn, 28 de Agosto , 2009, 05:31:44 PM

tópico anterior - próximo tópico

0 Membros e 1 Visitante estão vendo este tópico.

Overburn

Ter noções de eletrônica e eletricidade será muito útil na manutenção de computadores. Aprenda a dar os primeiros passos nessa interessante área.


PART - I

Um bom curso de hardware começa com eletricidade básica, a mesma que é estudada no segundo grau. São aprendidas noções sobre tensão, corrente, resistência, baterias. De posse dessas noções, são estudados os semicondutores, como transistores e diodos. Outros componentes eletrônicos são também estudados, como os capacitores e bobinas. O aluno aprende a construir e consertar fontes de alimentação, amplificadores, rádios transmissores e receptores. Finalmente chega a vez dos circuitos integrados (chips), entrando assim na etapa de eletrônica digital. Aprendemos a construir cuircuitos digitais simples, como contadores, displays, somadores, multiplexadores, decodificadores, etc. Um técnico formado assim está apto a consertar equipamentos digitais em geral, e não apenas computadores.

Para consertar PCs, tais conhecimentos não são suficientes, e também não podem ser considerados indispensáveis. Mais importante é ter uma boa idéia sobre o funcionamento do computador, saber identificar se um módulo está ou não funcionando, conhecer detalhes sobre o sistema operacional, aprender a resolver conflitos de hardware. Por isso é possível trabalhar com hardware de PCs sem nunca ter feito um curso de eletrônica, sem ter noções sobre transistores, resistores e outros componentes.

Acreditamos que consertar um computador ou trabalhar com o seu hardware, montando ou fazendo expansões, sem ter noções de eletrônica é como dirigir um automóvel sem ter noções básicas sobre mecânica. O ideal é ter o conhecimento básico completo, mas o estudo de eletrônica básica pode ser muito demorado. Para cobrir todos os seus assuntos seria preciso um livro tão extenso quanto este. Já que se torna imprtaticável para quem não dispõe de tempo, apresentamos neste capítulo um curso intensivo de eletrônica. Concentraremos nossa atenção em apresentar os componentes eletrônicos usados nas placas do computador e dar noções básicas sobre soldagem e o uso do multímetro, aparelho que pode ajudar bastante um técnico. Mostramos o funcionamento dos chips, circuitos digitais e alguns outros circuitos importantes encontrados nos PCs. Essas noções serão necessárias para que você acompanhe o restante do livro.


Noções sobre soldagem

A solda­gem é uma prática bastante conhecida dos técnicos, mas não é preciso ser um téc­nico para saber soldar. É fácil, e você poderá ir bem mais longe nas suas atividades de hardware. A primeira coisa a fazer é ir a uma loja de material eletrônico e adquirir o seguinte:


  • Ferro de soldar de 24 ou 30 watts
  • Sugador de solda
  • Rolo de solda para eletrônica (a mais fina)
  • Placa universal de circuito impresso
  • Resistores (qualquer valor) de 1/4 ou 1/8 W
  • Capacitores de poliéster, qualquer valor
  • Transistores BC548 ou similar
  • Alicate de corte e alicate de bico
  • Garra jacaré tamanho pequeno


Os valores dos transistores, capacitores e resistores acima não são importantes. Pode comprar os mais baratos que encontrar. Serão usados apenas no treinamento de soldagem e dessoldagem. A figura 1 mostra alguns dos componentes e ferramentas descritos acima.

Figura 3.1
Material para treinamento de soldagem.

a) Transistor
b) Capacitores 
c) Resistores 
d) Garras jacaré 
e) Placa universal 
f) Solda 
g) Ferro de soldar 
h) Sugador de solda


Soldagem


Ligue o ferro de soldar e espere cerca de 1 minuto até que esteja na temperatura ideal. Para verificar se a temperatura está boa, encoste a ponta do fio de solda na ponta do ferro de soldar. A solda deverá derreter com facilidade. Vamos começar soldando um resistor. Coloque o resistor encaixado em dois furos da placa univer­sal de circuito impresso. Feito isso, aqueça com a ponta do ferro de soldar o termi­nal do resistor e o cobre da placa de circuito impresso (figura 2). Ambos devem ser aqueci­dos para que a solda possa derreter facilmente. Encoste agora a ponta do fio de solda na junção aquecida entre a placa e o terminal do resistor. Mantenha o tempo todo a ponta do ferro de soldar também encostando nessa junção. A solda deverá derreter uniformemente. Afaste o fio de solda e depois o ferro de soldar. Dentro de aproximadamente dois ou três segundos a solda estará sólida. Use o ali­cate de corte para retirar o excesso do terminal do resistor que sobrou. 

Figura 3.2


Soldagem de um resistor

Treine a soldagem com os resistores e com os capacitores. Não exagere na quanti­dade de solda. Deve ficar uma quantidade semelhante à que você observa nas pla­cas do computador. Não sopre a solda para que esfrie. Espere três segundos e a solda esfriará sozinha. Não mova o componente enquanto a solda ainda não estiver solidificada.

Na soldagem de transistores você deverá tomar um pouco mais de cuidado, pois são muito sensíveis ao calor. Se o ferro de soldar ficar encostado em seus terminais por mais de cinco segundos poderá danificá-lo. Para reduzir o calor no transistor (o objetivo é esquentar apenas a parte que será soldada) prenda uma garra jacaré no terminal do transistor que estiver sendo soldado, do outro lado da placa, como indicado na figura 3.

Figura 3.3


Soldagem de um transistor

Quando for realizar uma soldagem "pra valer", lembre-se que a maioria dos com­ponentes possuem polaridade, ou seja, uma posição correta para encaixe. Normal­mente existe alguma indicação da posição correta na placa de circuito impresso. Se não existir tal indicação anote a posição correta antes de retirar o componente de­feituoso, para que o novo componente seja posicionado com a polaridade correta. Alguns componentes simplesmente não funcionam se forem soldados de forma invertida (Ex.: diodos, LEDs). Outros podem ser permanentemente danificados pela inver­são (transistores, capacitores eletrolíticos, chips).
Dessoldagem

A dessoldagem é um pouco mais fácil no caso de resistores, capacitores, diodos e transistores. No caso de chips é mais difícil devido ao grande número de terminais. O sugador de solda possui um êmbolo de pressão que remove a solda derretida dos circuitos. A figura 4 mostra como operá-lo. Primeiro pressione o seu êmbolo, depois aproxime o seu bico da solda derretida e pressione o botão para que o bico sugue a solda. O sugador puxará a solda derretida para o seu interior. Aperte novamente o êmbolo para que possa expelir a solda retirada, já no estado sólido.   

Figura 3.4
Usando o sugador de solda.

Arme o sugador de solda pressionando o êmbolo para baixo e deixando-o pronto para sugar. Encoste o ferro de solda quente no ponto de solda que você quer re­mover. A solda deverá derreter. Se estiver difícil de derreter, coloque um pingo de solda nova na ponta do ferro de soldar para facilitar a condução térmica, derre­tendo mais facilmente a solda da junção a ser desfeita. Sem tirar a ponta do ferro de soldar, encoste o bico do sugador (figura 5) na solda derretida e dispare. Se o com­ponente não ficar totalmente solto, encaixe uma chave de fenda e puxe-o leve­mente, usando a chave como alavanca. Encoste agora o ferro de soldar novamente no terminal e o componente sairá com facilidade.

Figura 3.5
Dessoldando componentes.

É desaconselhável a dessoldagem de chips por principiantes. Além de ser uma ope­ração muito mais difícil, os chips são extremamente sensíveis à temperatura. Sua soldagem e dessoldagem deve ser feita apenas em laboratórios especializados, equipados com uma estação de soldagem profissional.


Usando um multímetro digital


Um multímetro digital pode ajudar bas­tante nas atividades de hardware, principalmente em manutenção. Com ele você pode checar as tensões da fonte de alimentação e da rede elétrica, checar o estado da bateria da placa de CPU, verificar se o drive de CD-ROM está reproduzindo CDs de áudio, acompanhar sinais sonoros, verificar cabos e várias outras aplicações. Seu custo é menor do que você pensa. Com cerca de 30 reais você compra um modelo simples, e com cerca de 100 reais é possível comprar um modelo mais sofisticado.   

Figura 3.6
Multímetro digital.

Um multímetro possui duas pontas de prova, uma vermelha e uma preta. A preta deve ser conectada no ponto do multímetro indicado com GND ou COM (este é o chamado "terra"). A ponta de prova vermelha pode ser ligada em outras entradas, mas para a maioria das me­didas realizadas, a ligação é feita no ponto indicado com V-W-mA.

Uma chave rotativa é usada para selecionar o tipo de medida elétrica a ser feita: V para voltagem, W para resistência e mA para corrente. Uma chave é usada para a medição de voltagens em AC (corrente alternada) ou DC (corrente contínua). Por exemplo, para medir as tensões da fonte de alimentação, ou a tensão da bateria, usamos a chave em DC. Para medir a tensão presente na saída de áudio de um drive de CD-ROM ao tocar um CD musical (um tipo de corrente alteranada), usamos a escala AC. Para medir as tensões da rede elétrica, também utilizamos a escala AC.

Alguns multímetros possuem um único conjunto de escalas para voltagem, e uma chave adicional para escolher entre AC e DC. Outros modelos, como o da figura 6, não possuem esta chave AC/DC, e sim grupos independentes de escalas para volta­gens e correntes em AC e DC. A maioria dos multímetros não mede corrente al­ternada (ACA), apenas corrente contínua (DCA), tensão alternada (ACV) e tensão contínua (DCV).

Para cada grandeza elétrica existem várias escalas. Por exemplo, entre as várias posições da chave rotativa, podem existir algumas específicas para as seguintes faixas de voltagem: 200 mV, 2 V, 20 V, 200 V e 2000 V.

Se você pretende medir a tensão da bateria da placa de CPU (em torno de 3 volts), não use a escala de 2V, pois tensões acima de 2V serão indicadas como 1,9999 V. Escolha então a escala de 20V, pois terá condições de fazer a medida esperada. Da mesma forma, para medir a tensão de uma rede elétrica de 220 volts (use AC, pois trata-se de tensão alternada), não escolha a escala de 200 volts, pois a máxima ten­são medida será de 199,99 volts. Escolha então a escala de 2.000 volts ou outra para tensões elevadas. Como regra geral, sempre que a leitura indicada tem valor máximo ou outra indicação que esteja fora da escala, devemos utilizar uma escala maior. Quando não temos idéia aproximada da tensão que vamos medir, devemos começar com a escala de maior valor possível, pois se medirmos uma tensão muito elevada usando uma escala baixa, podemos danificar o aparelho.   

Figura 3.7
Medição de voltagem.

Para medir a tensão entre dois pontos, selecione a escala e encoste as pontas de prova nos terminais nos quais a tensão deve ser medida (figura 7). Muitas vezes queremos fazer medidas de tensão relativas ao terra (o terminal "negativo" da fonte de alimentação). Você pode então fixar a ponta de prova preta em um ponto ligado ao terra (por exemplo, os fios pretos do conector de alimentação da placa de CPU) e usar a outra ponta de prova para medir a tensão no ponto desejado.

A medição de resistência também possui várias escalas, e você deve escolher uma escala que comporte a medida a ser realizada. Se você não tem idéia da escala a ser usada, escolha a maior delas. Por exemplo, se medir um resistor de cerca de 150 ohms em uma escala de 20.000, será apresentado o valor 150. Se quiser maior precisão pode usar escalas menores. Por exemplo, na escala de 2000 ohms, o valor me­dido poderá ser 150,3 e na escala de 200 poderá ser 150,37.

Note que não podemos medir o valor de um resistor quando ele está em um circuito. O valor medido será influenciado pelos demais componentes do circuito ligados ao resistor. A medida correta é feita quando o resistor está desacoplado do circuito, como mostra a figura 8.

Figura 3.8
Medindo o valor de um resistor.

Cuidado: para resistores com valores acima de 10k ohms, é recomendável não tocar as mãos nas pontas de prova do multímetro, pois a resistência do corpo humano provocará erro na medida.

Podemos usar o multímetro na escala de resistência para verificar se um cabo está partido ou se um fusível está queimado. Quando um fio ou fusível está em perfeitas condições, sua resistência é bem baixa, em geral inferior a 1 ohm. Colocamos então o multímetro na escala mais baixa de resistência e fazemos a medida. Quando o cabo está partido ou o fusível está queimado, a resistência é muito alta, e quando está bom é baixa. Note que para fazer essas medidas é preciso que o circuito esteja desligado.

Muitos multímetros possuem ao lado da escala de resistência, uma escala que emite um beep através de um pequeno alto falante em caso de re­sistência baixa. Desta forma é possível medir as ligações sem ter que olhar para o display do multímetro. Prestamos atenção apenas nas conexões que estão sendo medidas e no som emitido. Na gíria de eletrônica isto é chamado de "bipar o circuito".

A medição de corrente é feita de forma um pouco diferente. Precisamos escolher a escala mais adequada, assim como nas medidas de tensão e resistência, mas as pon­tas de prova devem ser colocadas em série com o fio por onde passa a corrente a ser medida. Em muitos casos é preciso cortar e desenca­par o fio para fazer a medida, e soldar e isolar o corte posteriormente. Como é uma operação trabalhosa, devemos fazê-la apenas em caso de necessidade.   

Figura 3.9
Os multímetros possuem entradas adicionais para medir altas tensões e altas correntes.

O deste exemplo possui uma entrada para medir volts, ohms e Hertz (este mede também freqüência), uma outra entrada para medir miliampères e outra para correntes de até 10 ampères. Alguns multímetros podem ainda medir transistores para verificar se estão bons ou queimados.

Tome cuidado, pois a ponta de prova vermelha poderá precisar ser colocada em outras entradas, dependendo da grandeza a ser medida. Em geral os multímetros possuem entradas adicionais para medir altas voltagens e altas correntes. Certos modelos possuem uma entrada independente para medição de corrente (figura 9).


Alguns componentes eletrônicos

Vamos agora apresentar alguns componentes eletrônicos e suas propriedades elétricas. Não serão conhecimentos suficientes para você projetar e consertar circuitos complexos, como monitores e fontes, mas darão uma boa noção sobre o que você irá encontrar.


Bateria e fonte de alimentação

Nenhum circuito elétrico ou eletrônico pode funcionar sem um gerador de corrente elétrica. Os geradores nada mais são que baterias, pilhas ou fontes de alimentação. Possuem dois terminais, sendo um positivo e um negativo. O terminal positivo é aquele por onde "sai" a corrente, e o negativo é aquele por onde "entra" a corrente.   

Figura 3.10
Baterias e o seu símbolo.

A figura 11 mostra o diagrama de um circuito de uma lanterna, no qual temos uma lâmpada alimentada por uma bateria. A corrente elétrica sai do terminal positivo da bateria e trafega através do fio. Chegando à lâmpada, a energia elétrica é transformada em energia luminosa e calor. Depois de atravessar a lâmpada, a corrente retorna à bateria através do seu terminal negativo. Uma bateria é na verdade um dispositivo que empurra a corrente elétrica através dos fios ligados aos seus terminais.   

Figura 3.11
Esquema elétrico de uma lanterna. A letra "i" é usada para designar a corrente elétrica.

Toda bateria tem uma voltagem especificada. As pilhas, por exemplo, têm 1,5 volts. Também são bastante populares as baterias de 9 volts. Hoje em dia encontramos vários tipos de bateria com diversas voltagens, inclusive recarregáveis. É o caso das baterias de telefones celulares.

Em operação normal, uma bateria deve ter circuitos ligados aos seus terminais. A corrente elétrica faz com que esses circuitos funcionem. Por exemplo, se o circuito consistir em uma simples lâmpada, o funcionamento é caracterizado pelo acendimento desta lâmpada. É o que chamamos de circuito fechado. Uma bateria pode também estar desligada. Neste caso, existe tensão entre seus terminais, porém não existe corrente. A bateria não está portanto fornecendo energia elétrica ao circuito. É o que ocorre quando temos uma bateria isolada, fora do circuito, ou então quando o interruptor (ou chave) está desligado. Chamamos esta situação de circuito aberto.

Uma situação anormal é o chamado curto-circuito. Temos um fio ligando diretamente os dois terminais da bateria. A corrente atravessa o fio, porém como não existe circuito para alimentar, esta corrente tem enorme facilidade para trafegar. Isto faz a corrente atingir um valor altíssimo, e gerando muito aquecimento. O fio pode até mesmo derreter e pegar fogo, a bateria pode esquentar até ser danificada. Para proteger equipamentos de curto-circuitos acidentais, usamos fusíveis. Se você ligar os dois terminais de uma pilha através de um fio, o curto circuito não será muito perigoso, mas se ligar os dois terminais de uma tomada elétrica, pode até provocar um incêndio.   

Figura 3.12
Circuito aberto e curto circuito. Em um circuito aberto, a corrente é sempre zero. No curto circuito, a corrente pode ser, do ponto de vista matemático, infinita. Na prática isto não ocorre, mas a corrente tende a apresentar um valor bastante elevado e perigoso.

A figura 12 mostra as características de uma bateria em aberto e outra em curto. Na bateria em aberto, a tensão entre os terminais é igual à tensão da bateria (vamos chamá-la de V0), e a corrente vale 0. Quando a bateria está em curto, a tensão entre os terminais vale 0, e a corrente assume um valor elevadíssimo. Usando componentes teóricos, a corrente tenderia a ser infinita. Na prática isto não ocorre, mas atinge um valor alto, dependendo das características da bateria.

A fonte de alimentação é um circuito que tem a mesma função de uma bateria. Ela recebe a tensão da rede elétrica e realiza várias operações: redução, retificação, filtragem e regulação. O resultado é uma tensão contínua, semelhante à fornecida por baterias. Mais adiante neste capítulo mostraremos como uma fonte de alimentação realiza este processo.


Resistor

Este é o mais básico componente eletrônico. Muitos o chamam erradamente de resistência. Seu nome certo é resistor, e a resistência é a sua característica elétrica. Ainda assim o público leigo usa termos como "a resistência do chuveiro elétrico", "resistência do aquecedor", "resistência do ferro de passar", "resistência da torradeira". Esses dispositivos são resistores formados por fios metálicos com resistência baixa. Ao serem ligados em uma tensão elétrica, são atravessados por uma elevada corrente, resultando em grande dissipação de calor. Note que nas resistências desses aparelhos, o objetivo principal é a geração de calor. Já nos circuitos eletrônicos, suas funções são outras, e não gerar calor. Os resistores usados nesses circuitos devem ter valores tais que possam fazer o seu trabalho com a menor geração de calor possível.

Figura 3.13
Resistores e o seu símbolo.

Os resistores usados nos circuitos eletrônicos são de vários tipos e tamanhos. Seus dois parâmetros elétricos importantes são a resistência e a potência. Resistores que irão dissipar muita potência elétrica são de maior tamanho, e vice-versa. Os mostrados na figura 13 são de 1/8 W. Existem resistores de 1/4W, 1/2W, 1W, 2W, 5W, 10W e valores ainda mais elevados. A figura 13 mostra também o símbolo usado para representar o resistor quando desenhamos um diagrama elétrico.

Todo resitor tem um valor, que é a chamada resistência. A unidade usada para medir a resistência é o ohm, cujo símbolo é W. A voltagem gerada por uma bateria tem seu valor dado em volts, cujo símbolo é V. A unidade usada para medir a corrente elétrica é o ampère, cujo símbolo é A.

OBS: Durante a editoração do livro ocorreram neste capítulo (3) algumas trocas da letra grega ômega (W), pela letra W, devido a um erro de editoração. Nesta versão on-line motramos em vermelho as correções que se aplicam.

Existe uma relação direta entre a tensão aplicada sobre um resistor, a corrente que o atravessa e o valor da sua resistência. Esta relação é a chamada lei de Ohm. Ela diz que se um resitor de valor R é ligado a uma tensão V, sua corrente i é dada por:

i = V/R

é o mesmo que escrever:

V = R.i

Por exemplo, na figura 14 ligamos uma bateria de 12 V em um resistor de 6W. De acordo com a lei de ohm, a corrente que atravessará o resistor será de:

i = 12V ¸ 6W = 2A

Figura 3.14
Relação entre corrente, tensão e resistência.

Eventualmente podemos encontrar em circuitos, resistores ligados uns aos outros. Dizemos que os resistores estão associados. As duas principais formas de associação de resistores são as do tipo série e parelela. Ambas são mostradas na figura 15. Quando dois resistores estão em série, a resistência total é igual à soma das resistências de cada resistor. Portanto é calculada pela fórmula:

Rt = R1 + R2 + R3 + ... + Rn

Quando os resistores estão associados em paralelo, a fórmula da resistência equivalente é:

1/Rt = 1/R1 + 1/R2 + 1/R3 + ... + 1/Rn

Ou seja, o inverso da resistência equivalente é igual à soma dos inversos das resistências individuais.

Figura 3.15
Associações de resistores.

Outra grandeza elétrica importante é a potência. Ela representa a quantidade de energia elétrica que está sendo consumida por um resistor quando é percorrido por uma corrente, e é medida em watts, cujo símbolo é W. Quando um resistor R é ligado a uma tensão V e percorrido por uma corrente i, a potência elétrica P pode ser calculada de várias formas equivalentes:

P = V.i

P = R.i2

P = V2/R

Por exemplo, um resistor de 6W ligado a uma fonte de 12 V dissipa uma potência de:

P = 122 / 6 = 144/6 = 24 watts

É quantidade de calor suficiente para causar uma boa queimadura ao tocarmos neste resistor. Ao contrário do que ocorre na física do segundo grau, não usamos na prática resistores de valores tão baixos, nem operamos com correntes tão elevadas, pelo menos na maioria dos casos. Os resitores em usados em eletrônica apresentam em geral resistências da ordem de milhares de ohms, e as correntes elétricas normalmente assumem valores da ordem de milésimos de Ampères. Por isso usamos em eletrônica as unidades kW e mA para medir resistência e corrente. As fórmulas continuam válidas, apenas utilizamos medidas diferentes para resistência e corrente. Por exemplo, um resistor de 6 kW ligado em uma fonte de 12 V será percorrido por uma corrente de:

i = V/R = 12 / 6 = 2 mA.

A potência elétrica neste caso é dada em miliwatts (milésimos de Watt), cujo símbolo é mW:

P = V2/R = 122 / 6 = 24 mW.

Esta potência é tão pequena que praticamente não percebemos que o resistor está quente. Gerar calor não é o objetivo dos circuitos eletrônicos, portanto devemos utilizar resistores com os maiores valores possíveis, desde que em condições de manter em funcionamento correto os demais componentes.


Capacitor

O capacitor é um componente eletrônico capaz de armazenar e fornecer cargas elétricas. Ele é formado por duas placas paralelas, separadas por um material isolante, chamado dielétrico. Quando o ligamos a uma tensão fixa, momentaneamente passa por ele uma pequena corrente, até que suas placas paralelas fiquem carregadas. Uma fica com cargas negativas (elétrons) e outra com cargas positivas (falta de elétrons).   

Figura 3.16
Capacitores e seu símbolo.

Existem vários tipos de capacitores, e as principais diferenças estão nos valores e nas tensões elétricas suportadas. Um capacitor que vai ser ligado a uma tensão de 50 volts deve ser maior que outro de mesmo valor mas que vai ser ligado a uma tensão de apenas 10 volts. Um capacitor sofre ruptura do dielétrico quando é ligado a uma tensão mais elevada que a especificada. Em outras palavras, ele explode!

O valor de um capacitor é chamado de capacitância. A grandeza usada para medi-la é o faraday, cujo símbolo é F. O faraday é uma unidade muito grande para medir os capacitores da vida real. Um capacitor de 1F seria imenso. Encontramos na prática capacitores medindo algo da ordem de milésimos ou milionésimos do faraday. Por isso é mais comum usar o microfaraday (mF) para medir os capacitores. Um capacitor de 4700 mF, por exemplo, é considerado de tamanho relativamente grande para um circuito eletrônico. Ainda assim existem os chamados supercapacitores, que possuem capacitâncias da ordem de alguns faradays, entretanto não são empregados em circuitos eletrônicos devido ao seu grande tamanho.

Os capacitores têm várias aplicações nos circuitos eletrônicos. Um das principais é a filtragem. Eles podem acumular uma razoável quantidade de cargas quando estão ligados a uma tensão. Quando esta tensão é desligada, o capacitor é capaz de continuar fornecendo esta mesma tensão durante um pequeno período de tempo, funcionando portanto como uma espécie de bateria de curta duração.   

Figura 3.17
Capacitores de desacoplamento, um ao lado de cada chip.

Em qualquer placa de circuito, encontramos pequenos capacitores ao lado de cada chip. São chamados de capacitores de desacoplamento (figura 17). Uma das caracteríticas elétricas dos chips é que de um instante para outro podem aumentar substancialmente a quantidade de corrente consumida. A fonte de alimentação nem sempre tem condições de responder ao fornecimento de corrente com a rapidez necessária (em geral em bilionésimos de segundo), e o resultado é uma pequena queda de tensão próxima ao chip que está solicitando este aumento de corrente. O capacitor de desacoplamento tem condições de fornecer rapidamente a corrente elevada que o chip exige, dando tempo à fonte para se adaptar ao novo patamar de corrente. Os capacitores de desacoplamento funcionam portanto como pequenas baterias axiliares, ajudando a fonte de alimentação no fornecimento de corrente para os chips.

Um capacitor não precisa necessariamente ter placas paralelas e um dielétrico. Qualquer objeto possui uma capacitância. O corpo humano, por exemplo, pode funcionar como um capacitor de baixo valor, mas ainda assim capaz de armazenar cargas elétricas. É o que chamamos de eletricidade estática.

Capacitores também têm grandes aplicações em circuitos de rádio. Eles não permitem a passagem da corrente contínua, já que seu dielétrico é um isolante, mas permitem a passagem de tensões alternadas. Como a corrente alternada trafega ora no sentido direto, ora no sentido inverso, um capacitor pode ora se carregar positivamente, ora negativamente, deixando que a corrente alternada o "atravesse". Quanto mais alta é a freqüência da corrente alternada, mais facilmente ela atravessa o capacitor. Eles podem assim ser usados como filtros, barrando as freqüências baixas e deixando passar as freqüências altas.

Quando são necessárias capacitâncias elevadas, são utilizados capacitores eletrolíticos de alumínio ou tântalo. Os capacitores eletrolíticos de alumínio são muito usados em fontes de alimentação, em circuitos de som, rádio e TV, e até em placas de computador. Entretanto para as placas de computador é mais recomendável usar os capacitores de tântalo. Eles são mais caros, porém são mais duráveis e de menor tamanho. São muito usados em discos rígidos e telefones celulares, mas também os encontramos sendo usados como capacitores de desacoplamento do processador, nas placas de CPU. Infelizmente para economizar, muitos fabricantes de placas de CPU usam capacitores eletrolíticos de alumínio, ao invés de tântalo. Isso poderia ser aceitável, se levassem em conta a vida útil do capacitor. Existem capacitores eletrolíticos com duração de 10.000 horas, outros com 5.000 horas, outros com apenas 1.000 horas, que são mais baratos. Placas de CPU de baixo custo e baixa qualidade usam muitos componentes inadequados, sobretudo capacitores de baixa qualidade. Placas de CPU feitas por fabricantes comprometidos com a qualidade utilizam capacitores de tântalo ou então eletrolíticos de alumínio de longa duração.

Overburn

#1
Bobina

A bobina é um componente elétrico construído por um fio enrolado em várias voltas. Seu valor é a indutância, e a unidade de medida é o henry (H). Esta unidade é muito elevada para medir as bobinas da vida real, portanto são mais utilizados o milihenry (mH) e o microhenry (mH).  

Figura 3.18
Bobinas e seus símbolos

A bobina é atravessada facilmente pela corrente contínua. Corrente alternada de baixa freqüênica também tem facilidade para atravessar uma bobina, mas quanto maior é a freqüência, maior é a dificuldade. Esta característica é inversa à do capacitor. Por isso, associações de capacitores e bobinas são usados para formar filtros de vários tipos, como por exemplo, os sintonizadores. Quando giramos o botão sintonizador de estações de um rádio (DIAL), estamos na verdade atuando sobre um capacitor variável, associado a uma bobina, selecionado a freqüência desejada.


Transformador

Quando duas bobinas são enroladas sobre o mesmo núcleo, temos um componente derivado, chamado transformador. Cada uma das bobinas é chamada de enrolamento. Quando aplicamos uma tensão no primeiro enrolamento (chamado de primário), podemos retirar uma outra tensão, sendo gerada pelo segundo enrolamento (secundário). Isto pode ser usado para aumentar ou reduzir a tensão. Em uma fonte de alimentação convencional (não chaveada), o primeiro circuito é um transformador, que recebe a tensão da rede elétrica (110 ou 220 volts) e gera no secundário uma outra tensão alternada, porém de menor valor.  

Figura 3.19
Transformador e seu símbolo

Os transformadores têm muitas outras aplicações. São usados por exemplo como isoladores da linha telefônica em modems. Eles protegem (até certo ponto) o modem de eventuais sobretensões na linha telefônica. Pelo fato de terem uma indutância, eles também atuam como filtros de ruídos.

Figura 3.20


PART - II

Diodo

O diodo é um componente classificado como semicondutor. Ele é feito dos mesmos materiais que formam os transistores e chips. Este material é baseado no silício. Ao silício são adicionadas substâncias chamadas genericamente de dopagem ou impurezas. Temos assim trechos tipo N e tipo P. A diferença entre os dois tipos está na forma como os elétrons são conduzidos. Sem entrar em detalhes sobre microeletrônica, o importante aqui é saber que quando temos uma junção PN, a corrente elétrica trafega com facilidade do treho P para o trecho N, mas não consegue trafegar no sentido inverso. O diodo possui seus dois terminais ligados às partes de uma junção PN. A parte ligada ao P é chamada de anodo, e a parte ligada ao N é chamada de catodo. A corrente elétrica trafega livremente no sentido do anodo para o catodo, mas não pode trafegar no sentido inverso.  


Figura 3.21
Diodos e seu símbolo.

Por causa desta característica, os diodos são usados, entre outras aplicações, como retificadores. Eles atuam no processo de transformação de corrente alternada em corrente contínua.


LED

O LED é um tipo especial de diodo que tem a capacidade de emitir luz quando é atravessado por uma corrente elétrica. Como todo diodo, o LED (Light Emitting Diode) permite a passagem de corrente (quando acende) no sentido direto, do anodo para o catodo. No sentido inverso, a corrente não o atravessa, e a luz não é emitida.  


Figura 3.22
LEDs e seu símbolo.

Existem LEDs que emitem luz vermelha, verde, amarela e azul. Existem LEDs que emitem luz infravermelha, usados em sistemas de alarmes. Existem ainda os que emitem luz vermelha ou verde, dependendo do sentido da corrente. São na verdade dois LEDs, um vermelho e um verde, ambos montados sobre a mesma base, e ligados em paralelo, um no sentido direto e outro no inverso. Este tipo de LED é usado, por exemplo, em gravadores de CD-ROM. Quando estão lendo, emitem luz verde ou amarela. Quando estão gravando, emitem luz vermelha.


Display numérico

A luz emitida por um LED parte de um pequeno ponto luminoso, onde está a junção PN. Graças ao um difusor ótico, que é uma semi-esfera, temos a sensação de que a luz sai de todo o LED, e não apenas da junção PN. Podemos ter difusores de vários formatos, inclusive retangulares. O display digital com LEDs é um conjunto com 7 LEDs, cada um deles com um difusor retangular. Muitas vezes existe um oitavo LED que indica o ponto decimal. Cada um dos segmentos do display pode ser aceso ou apagado individualmente, e dependendo da combinação, diferentes números são formados.    

Figura 3.23
Display digital formado por LEDs. Este possui 4 dígitos.

Uma das características do display digital formado por LEDs é sua alta luminosidade. Em aplicações em que são usadas pilhas ou baterias, este tipo de display tem um problema: o consumo de corrente é relativamente elevado para a bateria. Mais eficiente é o display de cristal líquido, que não é luminoso, mas seu consumo de corrente é muito menor. As calculadoras e relógios digitais dos anos 70 usavam displays com LEDs. As pilhas das calculadoras ficavam logo gastas. Os relógios ficavam apagados, e era preciso pressionar um botão lateral para acender o display e ver as horas. Já nos anos 80, os displays de cristal líquido passaram a ser mais comuns em calculadoras, relógios e em outros aparelhos alimentados por baterias.


Transistor

Este é sem dúvida o mais importante componente eletrônico já criado. Ele deu origem aos chips que temos hoje nos computadores. Um processador, por exemplo, tem no seu interior, vários milhões de microscópicos transistores. Inventado nos laboratórios Bell nos anos 40, o transistor é um substituto das velhas válvulas eletrônicas, com grandes vantagens: tamanho minúsculo e pequeno consumo de energia. A figura 24 mostra alguns transistores e seu símbolo eletrônico. Note que existem vários tipos de transistores. Quanto ao sentido da corrente elétrica, os transistores são classificados como NPN e PNP, ambos mostrados na figura 24.  


Figura 3.24
Transistores e seus símbolos

Os transistores realizam inúmeras funções, sendo que as mais importantes são como amplificadores de tensão e amplificadores de corrente. Por exemplo, o sinal elétrico gerado por um microfone é tão fraco que não tem condições de gerar som quando é aplicado a um alto falante. Usamos então um transistor para elevar a tensão do sinal sonoro, de alguns milésimos de volts até alguns volts. Seria tensão suficiente para alimentar um alto falante, mas ainda sem condições de fornecer a potência adequada (a tensão está correta mas a corrente é baixa). Usamos então um segundo transistor atuando como amplificador de corrente. Teremos então a tensão igual à gerada pelo primeiro transistor, mas com maior capacidade de fornecer corrente.

Os aumentos de tensão e de corrente são no fundo, aumentos de energia. Esta energia não é gerada a partir do nada. O transistor retira a energia necessária a partir de uma bateria ou fonte de alimentação. A figura 25 mostra o diagrama do circuito simples, com dois transistores, para amplificar o sinal gerado por um microfone para que seja aplicado em um alto falante. Note que os transistores não trabalham sozinhos. Eles precisam ser acompanhados de resistores, capacitores, e dependendo do circuito, outros componentes, para realizar suas funções.  


Figura 3.25
Amplificador transistorizado.

MIC = Microfone
AF1 = Alto falante
VCC = Terminal positivo da bateria que alimenta o circuito
GND = Terra, ou terminal negativo da bateria.

Existem transitores de baixa, média e alta potência. Quanto maior é a potência, maior é o seu tamanho. Os transistores de alta potência em geral precisam ser montados sobre dissipadores de calor (coolers). Existem transitores especializados em operar com freqüências de áudio e outros especializados em altas freqüências, usados em circuitos de rádio e TV. Existem transistores especializados em chaveamento, indicados para operar em circuitos digitais. Existem fototransistores, que amplificam o sinal gerado pelo seu sensor ótico. Enfim, existem milhares de tipos de transistores, para as mais variadas aplicações.


Regulador de voltagem


Todos os circuitos eletrônicos necessitam, para que funcionem corretamente, do fornecimento de corrente vinda de uma bateria ou fonte de alimentação com valor constante. Por exemplo, se um circuito foi projetado para funcionar com 5 volts, talvez possa funcionar com tensões um pouco maiores ou um pouco menores, como 5,5 V ou 4,5 V, mas provavelmente não funcionará corretamente com valores muito mais altos ou muito mais baixos, como 6 V ou 4 V. Uma fonte de alimentação precisa portanto gerar uma tensão constante, independente de flutuações na rede elétrica e independente da quantidade de corrente que os circuitos exigem. Por isso todas as fontes de boa qualidade utilizam circuitos reguladores de voltagem.

É possível criar um regulador de voltagem utilizando alguns transistores, resitores e um componente especial chamado diodo Zener, capaz de gerar uma tensão fixa de referência a ser "imitada" pela fonte. Os fabricantes construíram esses circuitos de forma integrada, semelhante a um chip, usando uma única base de silício. Os reguladores mais simples têm um encapsulamento parecido com o de um transistor de potência, com três terminais. Um dos terminais é o terra, que deve ser ligado ao terminal negativo da fonte. O outro terminal é a entrada, onde deve ser aplicada a tensão bruta, não regulada. O terceiro terminal é a saída, por onde é fornecida a tensão regulada. A tensão de entrada deve ser superior à tensão que vai ser gerada. O regulador "corta" uma parte desta tensão de modo a manter na saída uma tensão fixa. Por exemplo, para alimentar um regulador de +5 Volts, podemos aplicar na entrada uma tensão não regulada de +8 Volts, podendo variar entre +6 e +10. A saída fornecerá +5 V, e o restante será desprezado.  


Figura 3.26
Reguladores de voltagem em uma placa de CPU.

Muitos reguladores produzem tensões fixas, mas existem modelos que podem ser ligados a uma tensão de referência que pode ser programada. Nas placas de CPU existe um circuito responsável por gerar as tensões exigidas pelo processador. A maioria dos processadores modernos requer uma fonte de +3,3 V para operações externas, e uma fonte de valor menor para as operações internas. Dependendo do processador, esta tensão pode ser de +1,3 V, +1,6V, +1,7V, +2,1V ou praticamente qualquer valor entre 1 V e 3,5 V. Nos processadores mais novos, esses valores tendem a ser menores, em geral inferiores a 2 V. O circuito gerador de voltagem da placa de CPU toma como base a tensão de +3,3 V fornecida pela fonte de alimentação do computador, e em função do valor indicado pelo processador, gera a tensão necessária. Trata-se de um regulador de tensão variável e programável.

Soquetes


A maioria dos componentes eletrônicos são soldados nas suas placas. Outros componentes precisam ser removidos periodicamente para substituição ou manutenção. Por exemplo, uma lâmpada não é aparafusada ou soldada diretamente aos fios da rede elétrica. Ela é presa através de um bocal, e este sim é aparafusado aos fios. O bocal é na verdade um soquete para a lâmpada, tanto que em inglês, é usado o termo socket para designar o bocal de uma lâmpada.

Da mesma forma, certos componentes eletrônicos podem precisar ser removidos, trocados ou instalados. É o caso dos processadores, memórias e alguns chips. Para isso esses chips são encaixados sobre soquetes. Os soquetes sim, são soldados nas placas de circuito, e sobre eles encaixamos os chips.  


Figura 3.27
Soquete DIP.

O tipo mais simples é o chamado de soquete DIP (dual in-line package). Ele é apropriado para chips que também usam o encapsulamento DIP. Existem soquetes DIP de vários tamanhos, com diferentes números de terminais (ou pinos). Podemos encontrar soquetes DIP com 8, 10, 12, 14, 16, 18, 20, 22, 24, 28 pinos, e assim por diante. Em geral soquetes com mais de 32 pinos são mais largos que os com menos pinos. Na própria figura 28 vemos duas versões de soquetes de 28 pinos, sendo um largo e um estreito.


Figura 3.28
Soquetes de vários tamanhos.

Todos os pinos dos soquetes são numerados, porém esta numeração não está indicada, mas fica implícita. Para saber o número de qualquer pino, basta localizar a posição do pino 1. Tanto os soquetes quanto os chips de encapsulamento DIP possuem uma extremidade diferente da outra, com um chanfro ou algum tipo de marcação. Muitas vezes esta marcação está desenhada na placa (os desenhos na placa são chamados de serigrafia). Quando olhamos um soquete de tal forma que o chanfro ou marcação fique orientada para a esquerda, o pino 1 é o primeiro na parte inferior (veja a figura 29). Os demais pinos seguem a seqüência, até a outra extermidade. No outro lado da mesma extremidade a seqüência continua, até o último pino do soquete, que fica na mesma extremidade que o pino 1.


Figura 3.29
Numeração de alguns soquetes DIP.

Quando vamos encaixar um chip em um soquete, temos que prestar atenção na orientação correta. O pino 1 do chip deve corresponder ao pino 1 do soquete. Se o encaixe for feito de forma invertida ou deslocada, o chip provavelmente queimará, e o mesmo pode ocorrer com a placa. Os chips também possuem um chanfro ou um ponto circular em baixo relevo para indicar a posição do pino 1, e a seqüência é a mesma do soquete (figura 30).  

Figura 3.30
Posição do pino 1 nos chips.

Os soquetes mais sofisticados são os dos processadores. Possuem mais de 300 pinos, alguns ultrapassando os 400. O número de pinos é tão grande que o encaixe se torna difícil. Cada pino requer uma pequena força para entrar sob pressão no furo correspondente do soquete, mas quando multiplicamos esta pequena força por 400, temos uma grande força. Como seria difícil encaixar e retirar o chip do soquete, foram adotados para esses casos os soquetes de força de inserção zero (Zero Insertion Force, ou ZIF). Eles possuem uma pequena alavanca lateral que ao ser aberta aumenta os furos onde os terminais ("perninhas") do chip vão ser encaixados. O chip é posicionado com facilidade e então a alavanca é travada fazendo com que cada furo diminua e segure o terminal correspondente com boa pressão.  


Figura 3.31
Encaixando um processador em um soquete ZIF.

Em todos os processadores modernos, existem mecanismos que impedem que o encaixe seja feito de forma invertida. Existem por exemplo, furos a menos em um ou dois cantos do soquete, bem como pinos a menos em um ou dois cantos do processador, fazendo com que o encaixe só possa ocorrer na posição certa.  


Figura 3.32
Furações diferentes no processador e no soquete ZIF impedem o encaixe invertido.

Devemos entretanto tomar cuidado com certos processadores antigos. Os processadores 486 e 586 não possuem diferenças entre as posições de encaixe, portanto um usuário distraído conseguirá fazer o encaixe de 4 formas diferentes, sendo uma correta e 3 erradas. As formas erradas causarão a queima do processador. Devemos portanto prestar atenção no chanfro existente no processador. Um dos seus cantos é diferente dos outros, e este deve corresponder ao pino 1 do soquete. O pino 1 do soquete, por sua vez, é aquele mais próximo da "dobradiça" da alavanca.


Figura 3.33
Orientação correta de processadores 486 e 586. As setas indicam a posição do pino 1.

De um modo geral, vários chips possuem pinos simétricos e por isso podem ser indevidamente encaixados de forma errada, causando sua queima. Ao fazer o encaixe temos sempre que procurar uma indicação de pino 1 no soquete ou na serigrafia, e a indicação de pino 1 no chip. Esta indicação é sempre apresentada na forma de um canto diferente ou marcado com um ponto. Preste atenção também na posição do chanfro existente no chip.

Figura 3.34
Indicações de pino 1 em um chip e no seu soquete.


Slot

O slot é um tipo especial de soquete. A diferença é que normalmente são usados para o encaixe de placas, apesar de serem usados também para certos processadores. A figura 35 mostra alguns slots encontrados em placas de CPU.  


Figura 3.35
Slots de uma placa de CPU.

Um slot é um conector plástico com uma, duas ou três fendas alinhadas, nas quais existem internamente, duas seqüências de contatos elétricos. A placa a ser conectada possui contatos em ambas as faces, que correspondem a contatos nessas duas fileiras do slot.

Entre 1997 e 2000, os principais processadores foram produzidos em versões para encaixe em slots. Eram os processadores Pentium II, bem como as primeiras versões dos processadores Celeron, Pentium III e Athlon. As placas de CPU correspondentes tinham slots próprios par ao encaixe desses processadores. Este método de encaixe caiu em desuso, mas dependendo das características de futuros processadores, nada impede que venham a ser novamente adotados. O próprio processador Intel Itanium e seus sucessores serão produzidos inicialmente em versões de cartucho.  


Figura 3.36
Slot para processador.

Normalmente os slots possuem dispositivos que impedem que seja feito o encaixe de forma invertida, ou que seja encaixada uma placa não compatível com o slot. Por exemplo, não conseguiremos instalar uma placa de vídeo AGP em um slot PCI pois a chapa traseira do gabinete do computador impedirá o posicionamento da placa. Processadores Pentium II, Pentium III e Celeron não podem ser encaixados em um slot para processador Athlon, e vice-versa, mas um usuário distraído pode conseguir posicionar o processador de trás para frente, queimando tanto o processador como a placa. Instalar processadores não é tarefa para leigos. É preciso saber reconhecer os processadores e também saber os modelos suportados por cada placa de CPU.

Overburn

#2
Conectores

Um conector é uma peça contendo um grupo de contatos elétricos relacionados uns com os outros. Por exemplo, na extremidade do cabo que parte do monitor, existe um conector de 15 pinos que é ligado em outro conector correspondente da placa de vídeo. Os sinais existentes nesses 15 pinos são diferentes, mas estão relacionados entre si. Existem por exemplo 2 pinos para a transmissão do vermelho, 2 para o verde e 2 para o azul. Existem pinos para transmissão do sincronismo horizontal e sincronismo vertical.  


Figura 3.37
Conectores do monitor e da placa de vídeo.

Muitos conectores são internos, outros são externos. Os internos são usados para conexões dentro do computador. Os externos são usados para ligar dispositivos externos. Conectores trabalham aos pares, e normalmente um é chamado "macho" e o outro "fêmea". Obviamente o tipo macho é aquele com pinos metálicos, que se encaixam sobre os orifícios metalizados do conector fêmea correspondente. Realmente tem uma certa conotação sexual.

Entre os conectores externos, citamos os da impressora, do teclado, do mouse, do joystick, da rede elétrica, do modem, das caixas de som e microfones e diversos outros. Todos serão apresentados em partes oportunas deste livro. Os conectores internos também são diversos: da fonte de alimentação, do disco rígido, do drive de disquetes, do drive de CD-ROM, e assim por diante. Um conector muito importante é o do cabo que liga o disco rígido à sua interface (figura 38). Trata-se de um conector macho de 40 pinos, encontrado na placa de CPU. Observe que em qualquer caso existe a indicação da posição do pino 1 deste conector.  


Figura 3.38
Conector da interface IDE e a posição do pino 1.

No conector da interface do disco rígido, encaixamos um cabo que leva os sinais até o disco rígido propriamente dito. Em uma das extremidades deste cabo existe um conector fêmea correspondente. Este conector é ligado a aquele existente na placa de CPU, e temos que prestar atenção na posição do pino 1. Basta observar que um dos fios do cabo é pintado de vermelho. A posição do fio vermelho corresponde ao pino 1 do conector do cabo, que deve estar alinhado com o pino 1 do conector existente na placa.  


Figura 3.39
Um dos fios do cabo é pintado, geralmente de vermelho, o que indica a posição do pino 1.


Cabo flat

Alguns dispositivos são ligados diretamente aos outros, usando apenas conectores. O processador, as memórias e os chips são encaixados diretamente em seus soquetes. As placas de expansão são conectadas diretamente nos seus slots. Existem entretanto vários casos de conexões elétricas que precisam ser feitas através de cabos. Por exemplo, o disco rígido não pode ser ligado diretamente na placa de CPU. Um cabo apropriado é então usado para esta conexão. O mesmo ocorre com o drive de CD-ROM, drive de disquetes e vários outros dispositivos. Quando o número de sinais elétricos do conector é muito grande, a forma mais eficiente de realizar a conexão é utilizando o chamado cabo flat. Existem cabos flat com diversos números de condutores. O cabo usado para o drive de disquetes usa 34 vias. Os cabos usados em discos rígidos IDE usam 40 ou 80 vias. Os cabos usados por discos e dispositivos SCSI podem usar 50, 68 ou 80 vias. Enfim, são vários padrões para diversas aplicações. Os cabos flat possuem no mínimo dois conectores, que ligam um dispositivo à sua interface. Certas interfaces permitem ligar dois ou mais dispositivos, portanto os cabos flat correspondentes possuem dois ou mais conectores.  

Figura 3.40
Cabo flat para discos rígidos IDE.

Todos os cabos flat possuem um dos seus fios pintado de vermelho (em alguns casos de outra cor). Este é o fio número 1, que corresponde ao pino 1 de cada conector, que por sua vez têm que corresponder aos pinos 1 dos conectores onde são encaixados.


Jumpers e microchaves


Figura 3.42
Jumpers.


A microchave ou dip switch é um dispositivo que desempenha a mesma função que o jumper. A diferença é que seu formato é similar ao de um chip. Além disso, as microchaves são apresentadas em grupos, em geral de 4 ou 8 chaves. Cada chave pode ser posicionada nas posições ON e OFF, o que equivale a configurações com jumper e sem jumper, respectivamente.


Figura 3.43
Microchaves.

Os jumpers e microchaves possuem várias aplicações. Nas placas de CPU, servem para habilitar e desabilitar o funcionamento da bateria, selecionar o tipo e a velocidade das memórias, a velocidade e a tensão do processador, entre varias outras funções.


Cristal

Todos os circuitos digitais dependem de uma base de tempo para poderem funcionar. Por exemplo, um relógio digital precisa de um circuito capaz de gerar pulsos digitais a cada centésimo de segundo. Nesse caso, 100 desses pulsos correspondem a 1 segundo, e a partir daí são feitas contagens de minutos, horas, etc. Outros circuitos digitais também necessitam de geradores de base de tempo similares. O cristal é o componente responsável pela geração da base de tempo. Cristais são produzidos para entrar em ressonância em uma determinada freqüência. Eles são muito precisos nesta tarefa. São capazes de gerar freqüências fixas, com precisão da ordem de 0,001%.

Os cristais são muito sensíveis, por isso são protegidos por um encapsulamento metálico. A figura 44 mostra alguns cristais encontrados nas placas de um computador.

Figura 3.44
Cristais.


Gerador de clock

Um cristal não trabalha sozinho na geração de freqüências que mantém a cadência de funcionamento dos circuitos digitais. São usados circuitos chamados osciladores, e o cristal serve apenas como a referência para esses circuitos. Existem chips que são capazes de gerar diversos valores de freqüência, a partir de um cristal de referência. Um circuito oscilador gera uma única freqüência. Já um circuito gerador de clock é capaz de gerar vários valores de freqüências, e cada uma delas pode ser programada, ou seja, seu valor pode ser escolhido entre várias opções. Por exemplo, certas placas de CPU podem utilizar processadores com clocks externos de 66, 100 ou 133 MHz. O valor escolhido é determinado através da programação do gerador de clock.  


Figura 3.45
Um chip gerador de clock.


Componentes SMD

Antigamente a montagem de uma placa de circuito era um processo extremamente demorado e precisava ser feito manualmente. Os componentes eram encaixados em furos existentes nas placas, e a seguir eram soldados. Eram necessárias várias horas para realizar este trabalho, e o custo final era muito elevado, já que o trabalho consumia muita mão de obra. Hoje em dia é utilizado um processo muito mais rápido, graças à tecnologia SMD (Surface Mounted Devices, ou dispositivos montados na superfície). Os componentes não têm mais terminais para serem encaixados em furos das placas de circuito. Ao invés disso, eles são colocados sobre a superfície da placa. Uma camada de pasta de solda (resina com minúsculas partículas de solda em estado sólido) é previamente aplicada sobre a placa, ainda sem componentes. A seguir uma grande máquina coloca os componentes SMD nos seus lugares. A placa é encaminhada para um forno que derrete a pasta de solda, fixando definitivamente os componentes.

O gerador de clock mostrado na figura 45, bem como os pequenos componentes ao seu redor, são do tipo SMD. Eles não têm "perninhas" (ou terminais) como os componentes convencionais. São indicados para produção de peças em alta escala, enquanto os componentes convencionais são indicados para montagem em pequena escala.


Pronto!
PART I - II Concluída.
logo logo vou estar disponibilizando PART III - IV.


Enjoy!

Sr.TheOne

#3
Oloco.....como sempre inovando parabéns pelo post, assim que estiver concluído um outro estudo leio com calma, mais isso é de grande ajuda, parabéns mais uma vez brother.

Citar
Se um dia você entrar no google e aparecer uma menssagem "Servidor não encontrado" Atenção: Corra para um abrigo o fim do mundo chegou!
sr.the.one@hotmail.com

guioximitsu

Bem completo :)
Valeu pela aula de eletrônica :D :D :D
Ainda vou acabar de ler,rsrsrsr ;D
"Inteligência busca Sabedoria"